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Abstract

This analysis exhibits a strong interdisciplinary nature and deals with advances in protein (crystal) engineering

models and computational methods as well as with novel results on the relative importance of �controlling forces� in
macromolecular crystal growth. The attention is focused in particular on microgravity fluid-dynamic aspects. From a

numerical point of view, the growing crystal gives rise to a moving boundary problem. A �kinetic-coefficient-based�
volume tracking method is specifically and carefully developed according to the complex properties and mechanisms of

macromolecular protein crystal growth taking into account the possibility of anisotropic (faceted) surface-orientation-

dependent growth. The method is used to shed some light on the interplay of surface attachment kinetics and mass

transport (diffusive or convective) in liquid phase and on several mechanisms still poorly understood. It is shown that

the size of a growing crystal plays a �critical role� in the relative importance of surface effects and in determining the

intensity of convection. Convective effects, in turn, are found to impact growth rates, macroscopic structures of pre-

cipitates, particle size and morphology as well as the mechanisms driving growth. The paper introduces a novel

computational method (that simulates the growth due to the slow addition of solute molecules to a lattice and can

handle the shape of organic growing crystals under the influence of natural convection) and, at the same time, rep-

resents a quite exhaustive attempt to help organic crystal growers to discern the complex interrelations among the

various parameters under one�s control (that are not independent of one another) and to elaborate rational guidelines

relating to physical factors that can influence the probability of success in crystallizing protein substances.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

In the last years great interest has been directed towards crystals of biological macromolecules and

towards the crystallization process of protein substances. In fact, single crystals with good diffraction
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properties and structural quality are needed to achieve high resolution data on protein structure, needed for

progress in biotech and drug. Typically, the crystals are obtained by precipitation from super-saturated

solutions with a number of techniques. Producing protein crystals of adequate size, however, is often the

�bottleneck� for three-dimensional, atomic-resolution structure studies of protein molecules. Superimposed

on this is the poor state of our current understanding of macromolecular crystallization mechanisms and

the forces that promote and maintain these mechanisms. For this reason, further investigation is required.

Because of the large size and complexity of protein molecules and the weakness of the bonding forces

between them, it is often believed that the experimental principles and methodologies (and associated
mathematical models) underlying high-quality inorganic crystal growth are of little help in protein crys-

tallization.

Macromolecules are extremely complex physical–chemical systems whose properties vary as a function

of many environmental influences. Moreover, the various parameters under one�s control are not inde-

pendent of one another and their interrelations may be difficult to discern. It is, therefore, not easy to

elaborate rational guidelines relating to physical factors that can increase the probability of success in

crystallizing a particular protein.

Several studies have shown that the growth rates are sensitive to a very large amount of parameters, e.g.,
temperature, supersaturation, defect formation, shear forces, etc. In particular, it has been shown that the

growth rates can be crystal surface-orientation dependent, i.e., that the different faces of a growing crystal

may exhibit different growth according to the crystallographic structure (�faceted� or anisotropic growth;

see, e.g. [1]); correspondingly crystal �habit� change may occur due to changes in the level of supersatu-

ration. The problem is very complex and far to be well understood. An exhaustive review of the previous

fundamental protein crystal growth and morphology experimental studies has been given in Monaco and

Rosenberger [2] and in Vekilov and Chernov [3]. These reviews show in particular that previous experi-

mental reports have offered conflicting results on the �controlling forces� in protein crystal growth.
With regard to the rate of growth of protein crystals, it is well known that there are two important effects

to consider: the transport of molecules to the face of a growing nucleus or crystal, and the frequency with

which the molecules orient and attach themselves to the growing surface (i.e., crystal growth rates can be

considered in terms of mass transport in liquid phase and attachment kinetics). However, the results

provided by the different investigators do not agree about the relative importance of these two effects. The

presence of a distinct boundary layer about the crystals supports the idea of competitive transport and

attachment kinetics in limiting the crystal growth rate. However, the interplay between these effects is still

unknown even if the case of mass transport in liquid phase simply governed by diffusion is considered.
Superimposed on this is the poor state of our current understanding of the effect of convective transport in

liquid phase. Some interesting information has been provided by recent experiments in space.

Crystallization experiments carried out in microgravity conditions, in fact, have yielded protein crystals

that resulted in diffraction data of significantly higher resolution than the best crystals of these proteins

grown on Earth. Since an obvious difference between the space and Earth-based experiments is the mag-

nitude of the buoyancy forces in the solution, the role of solutal convection in protein crystal growth has

been proved to be very important.

Protein crystals are typically grown from solutions that, in addition to the solvent and protein, contain a
precipitant of well-defined bulk concentration. The interactions between these species in the solution are

not well understood. Neither is how convection affects these interactions. In general convection enhances

mass transport. As a consequence, crystal growth rates in most inorganic systems are increased by con-

vection. Some experimental results obtained in the case of protein substances suggest that convection seems

to influence interface behaviour. Convective effects in protein precipitation processes however are very

poorly understood. It is known that they impact protein structures in precipitates, particle size and mor-

phology, but the mechanisms are still unknown. The available experimental results are fragmentary, in-

complete and often contradictory (e.g. [4] have found a decrease of the growth rates due to convection).
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While efficient numerical methods have been developed and made available for the scientific community in

the case of growth of inorganic substances (in particular for the case of crystals grown by thermal solid-

ification of melts under pure diffusive regime or under buoyancy effects), the modelling of the growth of

protein crystals and of the interplay between the growth and the presence of convective fields is still an open

task.

An interesting effort to the understanding of the interaction between organic crystal growth and convection

has been given by Lin et al. [5]. They devised an excellent comprehensive model of convective–diffusive

transport in protein crystal growth at standard and zero gravity conditions. Time-dependent solutions were
obtained for the convective velocity field, concentration distributions of the protein and precipitant in the

solution, the growth rate and salt distribution in the crystal. The protein concentration at the crystal interface

was computed using a kinetic-coefficient-based surface condition. The increase of mass (size) of the growing

crystal due to protein depletion in the liquid phase however was not taken into account.

According to different experimental studies (see, e.g. [6]), on the other hand, it seems that the increasing

size of a growing crystal plays a �critical role� in the phenomena under investigation and in particular in

determining the relative importance of surface attachment kinetics and mass transport in liquid phase under

diffusive or convective conditions.
From a numerical point of view, strictly speaking, the growing crystal gives rise to a moving boundary

problem. Moving boundary problems are still a challenging task for numerical simulation, have instigated

much research, and have led to many different solutions.

A very interesting and pioneer study related to the interplay between crystal growth and convection and

to the associate moving boundary problem has been carried out recently by Noh et al. [7]. They investigated

the growth behaviours of a precipitate particle in a supersaturated solution under the effect of �a priori� (well
defined) imposed �ambient� flows. The particle was assumed to have initially a spherical shape. The Stokes

flow approximation was assumed to simplify the model. Numerical solutions were obtained through nu-
merically generated orthogonal curvilinear co-ordinate system, automatically adjusted to fit the boundary

shape at any instant. Crystal growth rate were computed through consideration of the isotropic and an-

isotropic interfacial free energies. The initially spherical particle was found to evolve into a peach-like shape

if posed in a uniform streaming flow.

Coriell et al. [1] investigated the effect of a parallel shear flow and anisotropic interface kinetics on the

onset of morphological instability during growth from a supersaturated solution. Their excellent linear

stability analysis was carried out taking into account a kinetic coefficient which is non-linear function of the

supersaturation and crystallographic orientation.
The first method capable of modelling complex multi-phase flow separated by a moving interface and

capable to undertake a fixed-grid solution without resorting to mathematical manipulations and trans-

formations (i.e., moving grid boundary-fitted methodology), was the Marker and Cell (MAC) of Harlow

and Welch [8]. Instead of MAC, however, volume tracking methods (e.g., volume of fluid, SLIC simple line

interface calculation, and PLIC piecewise linear interface calculation), front tracking and level-set methods

have became popular in the last years (for a very comprehensive discussion dealing with the genesis and the

evolution of these methods see the excellent Rider and Kothe [9] and references therein, Hirt and Nichols

[10], Osher and Sethian [11], Brackbill et al. [12], Unverdi and Tryggvason [13], Sussman, Smereka and
Osher [14], Gueyffier et al. [15], Osher and Fedkiw [16], and Sethian [17]). In particular, they have enjoyed

widespread use for the simulation of typical problems associated to gas/liquid or liquid/liquid systems

where the surface tension effects play a �critical role� in determining the shape of the fluid/fluid interface and/

or its motion (e.g., gas-bubble or drops in liquid matrices [18,19]; Bassano [20] in particular investigated

the thermo-solutal-capillary migration of a liquid drop, injected in a closed cavity filled of a (initially) pure

miscible liquid, and the related dissolution process).

On the other hand, �enthalpy methods� and similar techniques taking into account the release or ab-

sorption of latent heat have been successfully applied to the case of thermal phase change problems
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characterized by the presence of moving solid/melt interfaces due to the heating or the cooling of the system

under investigation. These techniques were pioneered by Voller and Prakash [21], Bennon and Incropera

[22,23], Brent et al. [24] and have been strongly improved over the years (see, e.g. [25–30] and many others).

The methodology and the formalism underlying modern volume tracking and level set methods has been

extended also to the above-mentioned techniques dealing with the solidification of melts (see, e.g. [31–34]).

A tremendous effort on the subject in particular has been provided by Kothe and his co-workers [31,32].

They elaborated a new casting simulation tool (known as ‘‘Telluride’’) that employs robust, high-resolution

finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification
physics on 3-D unstructured meshes. It can accurately track the topologically complex free surfaces present

during mold filling. Coupled to this flow algorithm the authors developed a comprehensive binary alloy

solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and

melt convection, as well as a microscopic description of segregation.

Despite these worthy and ambitious contributions, however, a complete numerical method aimed at the

(�moving boundary�) simulation of the growth of organic crystals (due to the addition of solute molecules at

the solid/liquid interface) by solubility modulation is still missing.

Macromolecular crystallization is a matter of searching, as systematically as possible, the ranges of the
individual parameters that impact upon crystal formation, finding a set or multiple sets of these factors that

yield some kind of crystals, and then optimizing the variable sets to obtain the best possible crystals for X-

ray analysis.

Aim of the present paper is: (1) to introduce a mathematical model to handle the complex phenomena

related to the growth or resolution of protein crystals according to the protein concentration and solubility

distribution in the feeding solution, taking into account the mass variation of the crystal due to the in-

corporation of nutrients and the possibility of (faceted) surface-orientation-dependent growth; (2) shed

some light on the complex interplay and relative importance of the surface attachment kinetics and the
mass transport (diffusive and/or convective) in liquid phase. In addition to the previous mathematical

modelling, the present paper deals in fact with a novel numerical technique to investigate the combined

effect of crystal growth and gravitational convection and in particular the interaction of this motion with

the concentration field around the crystal and with the growth rates. No simplifying assumptions (such as

Stokes flow, �a priori� imposed ambient flows or �fixed� crystal size) are assumed in the development of the

model.

The present contribution appears as the first attempt to analyze in detail these behaviours.
2. Organic crystal growth

An extensive body of theory and experimental results is available for the crystal growth rate analysis of

low molecular weight species. There is less experimental data for higher molecular weight material and in

particular for the crystallization of proteins. Factors such as limited availability of material and fragility of

the crystals have all combined to limit investigations into protein crystal growth kinetics.

The perplexing difficulties that arise in the crystallization of macromolecules in comparison with con-
ventional small molecules stem from the greater complexity, lability and dynamic properties of proteins.

Proteins are very sensitive to their environment and if exposed to sufficiently severe conditions may de-

nature and/or degrade. They must be constantly maintained in a thoroughly hydrated state at or near

physiological pH and temperature. Thus common methods for the crystallization of conventional mole-

cules such as evaporation of solvent, dramatic temperature variation, or addition of strong organic solvents

are unsuitable and destructive [35,36]. They must be supplanted with more gentle and restricted techniques.

Because proteins are sensitive and labile macromolecules that readily loose their native structures, the only

conditions that can support crystal growth are those that cause little or no perturbation of the molecular
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properties. The protein crystals must be grown from a solution to which they are tolerant. This is called the

mother liquor. Because complete hydration is essential for the maintenance of structure, protein crystals are

always bathed in the mother liquor.

The strategy employed to bring about crystallization is to guide the system very slowly toward a state of

reduced solubility by modifying the properties of the solvent.

The classical procedure for inducing proteins to separate from solution and produce a solid phase is to

gradually increase the level of saturation of a precipitant agent.

Protein precipitants fall into four broad categories: (a) salts; (b) organic solvents; (c) long chain polymers
and (d) low-molecular-mass polymers and non-volatile organic compounds.

Salts exert their effect by dehydrating proteins through competition for water molecules (their ability to

do this being proportional to the square of the valences of the ionic species composing the salt).

For a specific protein, the precipitation point (or solubility minima), however, is usually critically de-

pendent on the pH, temperature, the chemical composition of the precipitant and the properties of both the

protein and the solvent. Just as proteins may be driven from solution at constant pH and temperature by

the addition or removal of salt, they can similarly be crystallized or precipitated at constant ionic strength

by changes in pH or temperature. This is because the electrostatic character of the macromolecule, its
surface features, or its conformation may change as a function of pH, temperature and other variables as

well.

By these techniques a �suitable� limited degree of supersaturation can be achieved. In very concentrated

solutions, in fact, the macromolecules may aggregate as an amorphous precipitate. This result is to be

avoided if possible and is indicative that supersaturation has proceeded too extensively or too swiftly.

Many other distinguishing marks exist with respect to the crystallization of inorganic substances (see,

e.g. [37]). In many protein crystallization systems, interfacial kinetics are slow and are considered a major

source of difficulties in crystal growth. In many inorganic crystal growth systems, however, the growth rate
is limited by the transport of species to the interface so that the fluid-dynamics of the nutrient phase is at the

root of growth problems. The inorganic crystal growth in general is not plagued by problems related to

interfacial kinetics.

Superimposed on this is the fact that the rate of growth is determined by the nature of the growing

crystal surface. Addition of molecules to a rough surface requires less energy than addition to a smooth

surface, where surface nucleation is required for addition.

According to the Periodic Bond Chain Theory, [38], three different types of growth faces exist: flat faces,

stepped faces and kinked faces. Flat faces require two-dimensional nucleation (the formation of growing
sheets of molecules) in order to induce growth, and thus grow the slowest. Stepped faces grow as columns

of molecules, which requires only one-dimensional nucleation, and thus have intermediate growth rates.

Stepped faces typically occur as a result of a crystallographic screw axis causing spiral growth patterns to

occur at the surface of the crystal. Finally kinked faces are growth sites which do not require nucleation to

promote further growth, and therefore grow faster than the other two face types. Thus the type of the

growing crystal face (flat, stepped, or kinked) strongly influences the rate at which crystal growth occurs

(for mathematical models dealing with these aspects see Section 4.1).

In protein crystallization, the problem is further complicated by the incorporation of solvent (water) and
solution (also containing precipitant) into the crystal. Thus, in contrast to anhydrous inorganic crystalli-

zation, there is only partial (often negligible) rejection of the solvent at the crystal–solution interface.
3. Moving boundary method

In the present paragraph, ancient �moving boundary� numerical methods and in particular possible

novel strategies are briefly outlined in order to point out analogies, similarities and difference with the
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sophisticated numerical algorithm proposed here for the case of crystallization of organic substances due to

solubility modulation (OCGVOF – organic crystal growth volume of fraction method).

The numerical simulations of these problems require a discretization or nodalization to allow numerical

treatment on computers. There are two fundamentally different approaches: Eulerian methods use a frame

of reference (discretization grid or mesh, control volumes, etc.) fixed in space, and matter moving through

this frame of reference. Lagrangian methods instead use a frame of reference (marker particles) fixed to and

moving with the matter.

The first method capable of modelling multi-phase flow, separated by a moving interface, was the Marker
and Cell (MAC) of Harlow andWelch [8]. This was in fact a combination of an Eulerian solution of the basic

flowfield,withLagrangianmarker particles attached to onephase to distinguish it from the other phase.While

the staggeredmesh layout andother features ofMAChave become amodel formanyother Eulerian codes, the

marker particles proved to be computationally too expensive and have been rarely used.

In the specific case of mass crystallization from a supersaturated solution and in order to introduce novel

numerical techniques, one must generally accomplish at least two things simultaneously: (a) determine the

concentration fields of organic substance and precipitant in the liquid phase and (b) determine the position

of the interface between the solid and liquid phases. According to the technique used to address (a) and (b),
in principle the numerical procedures able to solve these problems can be divided into two groups:

(1) Multiple region solutions utilizing independent equations for each phase and coupling them with ap-

propriate boundary conditions at the crystal/liquid interface. This approach to the problem takes the point of

view that the interface separating the bulk phases is a mathematical boundary of zero thickness where in-

terfacial conditions are applied. These interfacial conditions couple to the concentration equations in the bulk

and this system of equations and boundary conditions provides a means to address (a) and (b). Difficulties

arise when this technique is employed since in this case in the vicinity of the crystallization front (phase

change), conditions on mass flux, velocity and solubility evolution have to be accounted for. This effectively
rules out the application of a fixed-grid numerical solution, as deforming grids or transformed (body-fitted)

co-ordinate systems are required to account for the position of the crystallization front (see, e.g. [7]).

(2) Single region (continuum) formulations (or �phase field� models) which eliminate the need for sep-

arate equations in each phase, by establishing conservation equations which are universally valid. From a

theoretical point of view the major advantage of the single region formulations is that they do not require

the use of quasi-steady approximations, numerical remeshing and co-ordinate mapping.

In a phase-field model, a phase-field variable/which varies in space and time is introduced to characterize

the phase of thematerial. In place of the �sharp� transition from crystal to liquid phases thatwould characterize
the multiple region formulations, here the phase-field varies smoothly but rapidly through an interfacial re-

gion. Additionally, in place of the interfacial jump conditions used in the multiple description a differential

equation applied over the entire computational domain governs the evolution of/. The effect is a formulation

of the free boundary problem that does not require the explicit application of interfacial conditions at the

unknown location of a phase boundary. For this reason in the present paper this strategy is adopted.
4. OCGVOF – organic crystal growth volume of fraction method

4.1. General properties

The OCGVOF method, which, similarly to volume tracking and enthalpy methods, is a single region

formulation, allows a fixed-grid solution to be undertaken and is therefore able to utilize standard solution

procedures for the fluid flow and species equations directly, without resorting to mathematical manipu-

lations and transformations.
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This method accounts for the solid mass stored in the generic computational cell by assigning an

appropriate value of / to each mesh point (/ ¼ 1 crystal, / ¼ 0 feeding solution and 0 < / < 1 for an

interfacial cell). The key element for the OCGVOF method is its technique for adjourning /. Upon

changing phase, the /-value of the cell is adjusted to account for mass release or absorption, this

adjustment being reflected in the protein concentration distribution as either a source or sink. The

modelling of these phenomena leads to the introduction of a group of differential equations, strictly

related, from a mathematical point of view, to the �kinetic conditions� used to model mass transfer at

the crystal surface.
On a molecular level crystal growth consists of the successive addition of �growth units� or �building

blocks� (nutrients) to a lattice. Growth units can consist of single molecules or possibly of clusters of

molecules. In solution, growth units are typically solvated, i.e., are surrounded by highly regularly arranged

shells of solvent molecules that interact with the growth unit in a bond-like fashion. Protein crystallization

does not fit any of the traditional (inorganic) models without major modification. Realistic models for

protein growth kinetics will have to accommodate that protein crystals consist of (see, e.g. [37]):

(a) Protein molecules on regular lattice sites forming a mesh-like network; (b) �bound water� that lines the
large channels formed by the wide-open protein network in bond-like arrangements that are regular enough
to be identified by X-ray diffraction and (c) �bulk water�.

These complicating features make it very unlikely that protein growth kinetics will follow any un-

modified inorganic growth models. Hence not surprisingly, the few available results for protein growth rate

dependence on bulk supersaturation deviate in form as well as magnitude considerably from any inorganic

model predictions.

The �attachment rates� in protein crystallization are considerably lower than in most inorganic systems

(this slow interface kinetics has been interpreted in terms of the low symmetry and the small binding en-

ergies involved in protein crystallization).
Because of these theoretical difficulties, Pusey et al. [6] expressed the growth rate of a protein substance

as an �empirical function� of supersaturation introducing a �kinetic coefficient� ([cm s�1]) dependent on the

physical properties of the protein.

This model is adopted in the present paper and further improved to take into account anisotropic

growth. This situation occurs for crystalline proteins which have high anisotropy (preferred orientations) in

either their surface energy or atomic attachment kinetics.

Surface attachment kinetics at the crystal surface depend on the local value of solubility and on a co-

efficient k (kinetic coefficient) having the dimension of a velocity whose value may be different according to
the local orientation of the crystal surface (surface-orientation-dependent growth); using mass balance (see,

e.g. [37]), and assuming a linear dependence of the growth rate by the interface supersaturation (see, e.g.

[5]), one obtains:

D
qP � qCCi=qS

� �
oC
on

����
i

¼ k n̂n
� � Ci � S

S

�
� d0

�
; ð1Þ

where Ci is the concentration of the protein at the crystal surface, D is the related diffusion coefficient, S is

the solubility (its value is function of the local concentration of the precipitant agent and/or of tempera-

ture), qP and qC are the protein mass density and the total mass density in the crystal, qS is the total density

of the solution, d0 is the width of the supersaturation zone in which no growth occurs, kðn̂nÞ is the kinetic

coefficient and n̂n is the unit vector perpendicular to the crystal surface pointing into the liquid. The pa-
rameter d0 takes into account the so-called �dead zone�, that according to many investigators, in the case of

organic substances, is due to the absorption of impurities that lead to strong retardation of the growth

kinetics. In the case of protein substances, such �impurities� are not necessarily extrinsic contaminants, being

often the result of protein �microheterogeneity� [2].



104 M. Lappa / Journal of Computational Physics 191 (2003) 97–129
Whenever protein in solute phase and solid crystal co-exist in equilibrium (saturation condition):

Ci ¼ S: ð2Þ

In a saturated solution, two states exist in equilibrium, the solid phase, and one consisting of molecules free

in solution. At saturation, no net increase in the proportion of solid phase can accrue since it would be

counterbalanced by an equivalent dissolution. Thus �crystals do not grow from a saturated solution�. The
system must be in a non-equilibrium, or supersaturated state to provide the thermodynamic driving force

for crystallization [35].

Solution must by some means be transformed or brought into the supersaturation state whereby its return
to equilibrium, forces exclusion of solute molecules into the solid state, the crystal. As long as Ci < S, more

solid material will dissolve if any. If, on the other hand,Ci > S, material will condense on anymaterial already

existing and augment its size. The �growth regime� may be very complex and non-linear (see, e.g. [39]). Its

features depend on several parameters and in particular it is function of the ratio between surface-attachment

kinetics (modelled by Eq. (1)) and mass transport in liquid phase (diffusive or convective).

The nucleation of new material is something else and the features of this phenomenon are out the scope

of the present work (for theoretical analysis of this phenomenon see the excellent paper of McPherson [35];

for numerical models dealing with the phenomena of protein nucleation, see, e.g., Lappa et al. [40] and
Lappa and Castagnolo [41]); the term �precipitation� refers in fact to the composite phenomenon of nu-

cleation and subsequent growth. Growth can take place at concentrations lower that those needed for

nucleation, as long as Ci > S. The solution is said to be supersaturated when the solute content is greater

than S and the degree of supersaturation r is defined by r ¼ C=S.

4.2. Governing field equations

The model is based on the mass balance equations. Therefore, in absence of convection, the diffusion of

protein is governed by the equation

oC
ot

¼ r2C if / ¼ 0: ð3aÞ

The diffusion of the precipitant agent is governed by the equation (it is assumed that precipitant does not

precipitate in solid phase):

oCsalt

ot
¼ Dsalt

D
r2Csalt if / ¼ 0: ð3bÞ

The non-dimensional form of the equations results from scaling the lengths by a reference distance (L), the
time by L2=D; the initial value of protein and precipitant agent (salt) are Cð0Þ and Csaltð0Þ, respectively. Note

that concentrations are not posed in non-dimensional form ([g cm�3]).

In presence of convection, the flow is governed by the continuity, Navier–Stokes and species equations,

that in non-dimensional conservative form read:

r � V ¼ 0; ð4Þ
oV
ot

¼ �rp �r � V V½ � þ Scr2V þ Sc Ra
C
Cð0Þ

�
� 1

�
ig þ

Dsalt

D
Sc Rasalt

Csalt

Csaltð0Þ

�
� 1

�
ig � Sc

1

g
V ; ð5Þ

where m is the kinematic viscosity,

Sc ¼ t
D
; Ra ¼

gbprotCð0ÞL3

mD
; Rasalt ¼

gbsaltCsaltð0ÞL3

mDsalt
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(the Boussinesq approximation is used to model the buoyancy forces, bprot and bsalt are the solutal ex-

pansion coefficients related to organic substance and salt, respectively);

oC
ot

¼
�
�r � V Cð Þ þ r2C

�
if / ¼ 0; ð6Þ
oCsalt

ot
¼

h
�r � V Csaltð Þ þ Dsalt Dr=

2Csalt

i
if / ¼ 0; ð7Þ

whereV and p are the non-dimensional velocity and pressure. The reference pressure is qSD
2=L2. Note that in

case solubilitymodulation is induced by temperature control, Eq. (7)must be replaced by the energy equation.

Assumptions invoked in the development of equations for this continuum model include: laminar flow,

Newtonian behaviour of the phases (this implies that solids, should be treated as highly viscous fluids),

constant phase densities (and Boussinesq approximation).

Moreover the solid phase (crystal) is assumed to be non-deforming and free of internal stress, while the
multiphase region (region where phase change occurs, i.e., region where the ‘‘growth units’’ are added to the

pre-existent crystalline structure) is viewed as a porous solid characterized by an isotropic permeability g by

analogy with the enthalpy methods (see, e.g. [21–24,29]).

The species Eqs. (6) and (7) are not solved for the domain occupied by solid phase since macromolecular

solute and salt cannot diffuse through the lattice; nutrient is ‘‘incorporated’’ (attached) at the crystal surface

for 0 < / < 1 according to Eq. (1), i.e., the crystal surface behaves as a sink for the protein available in

liquid phase.

The rate of absorption for the above-mentioned phenomenon is usually measured by the so-called
‘‘growth rate’’ h� (that can be seen also as a measure of the velocity of the moving solid/liquid interface, see

the next section for further details).

An important problem with fixed-grid solution procedures, however is accommodating the zero velocity

condition, which is required as a liquid region turns to solid. Various methods can be used in principle to

�switch off� velocities in computational cells that are becoming solid (or �switch on� velocities in the reverse

case). Velocities may simply be set to zero. Another possible approach is based on the viscosity. The vis-

cosity of a cell is driven to a very large value as the solid mass stored in this cell increases. The increasing

viscosity provides the necessary coupling between the physical state of the material in the cell and the
momentum equations, thereby driving velocities to zero in cells that are solid. A third possible approach

(porosity approach) requires that computational cells that are undergoing a phase change are modelled as a

pseudo-porous media, with the pseudo-permeability g being a function of / ranging between 0 (fully liquid

cell) and 1 (fully solid cell). For the present case of macromolecular organic crystal growth, this assumption

is based directly on the fact that solid formation occurs as a �permeable� crystalline matrix which coexists

with the liquid phase. The term – ScV =g in Eq. (5) is the Darcy term added to the momentum equation to

eliminate convection in the solid phase. In the present analysis pseudo-permeability is assumed to vary

according to the Carman–Kozeny equation [23,24]).

g ¼ ð1� /þ eÞ3

ð/þ eÞ2
; e ¼ 10�5: ð8Þ

In the pure solid (/ ¼ 1) and pure liquid (/ ¼ 0), Eq. (8) reduces to the appropriate limits, namely g ffi 0
and g ! 1, respectively. In practice the effect of g is as follows: in full liquid elements 1=g is very small and

has no influence; in elements that are changing phase, the value of 1=g will dominate over the transient,

convective and diffusive components of the momentum equation, thereby forcing them to imitate Carman–

Kozeny law; in totally solid elements, the final large value of 1=g will swamp out all terms in the governing

equations and force any velocity predictions effectively to zero.
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Since the momentum equation is valid throughout the entire domain, explicit consideration need not be

given to boundaries between solid, multiphase and liquid regions.

4.3. Phase field equation

On the surface of the crystal (jr/j 6¼ 0; 0 < / < 1), protein concentration must satisfy the kinetic

condition that in non-dimensional form reads:

1

qP � qCCi=qS

� �
oC
on

����
i

¼ ~kk n̂n
� �

rið � 1� d0Þ; ð9Þ

where ~kk ¼ kL=D, r is function of the local precipitant concentration and

n̂n ¼ � r/
r/j j ¼ ða; bÞ; ð10Þ
a ¼ � o/
ox

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o/
ox

� �2

þ o/
oy

� �2
s

; b ¼ � o/
oy

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o/
ox

� �2

þ o/
oy

� �2
s

ð11Þ

since oC
on ¼ a oC

ox þ b oC
oy (hereafter the subscript �i� is omitted) Eq. (9) can be written as

a
oC
ox

þ b
oC
oy

¼ ~kk a; bð Þ qPð � qCC=qSÞðC=S � 1� d0Þ; ð12Þ

~kkðqP � qCC=qSÞðC=S � 1� d0Þ represents the mass exchange flux between solid and liquid phase (i.e.,

crystal and protein solution). The mass stored in computational cells that are undergoing phase change can

be computed according to the equation:

oM
ot

¼ k a; bð ÞL4

D
qPð � qCC=qSÞðC=S � 1� d0Þds; ð13Þ

where ds is the �reconstructed� portion of the crystal surface (by definition perpendicular to the interface

normal vector n̂n) �bounded� by the frontier of the control volume (computational cell) located astride the

crystal surface.

The non-dimensional volume of the crystal mass stored in a grid cell can be computed as ðqP is the

protein mass density in the crystal):

dvjstored ¼
1

L3

M
qP

ð14Þ

correspondingly:

/ ¼ dvjstored
dv

; ð15Þ

where dv is the volume of the computational cell.

Therefore the phase field equation reads

o/
ot

¼ 0 if r/j j ¼ 0; ð16aÞ
o/
ot

¼
~kk a; bð Þ qP � qCC=qSð ÞðC=S � 1� d0Þds

qPdv
if r/j j 6¼ 0; 0 < / < 1 ð16bÞ
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with C satisfying Eq. (12).

From mass balance the solution for the normal velocity at the interface is:

V � n̂n ¼ qC=qSð Þh� if r/j j 6¼ 0; 0 < / < 1; ð17aÞ

where qS (total density of the solution) is computed as qS ¼ qH20
ð1þ bprotCð0Þ þ bsaltCsaltð0ÞÞ and the non-

dimensional growth rate (see, e.g. [6]) is computed as:

h� ¼ 1

qP � qCC=qS

� �
oC
on

¼ ~kk n̂n
� �

rð � 1� d0Þ ð17bÞ

with C satisfying Eq. (12).

The parameter h is a measure of the rate of absorption of the protein at the crystal surface (it is pro-

portional to oC=on) and can be seen also as a measure of the velocity of the advancing solid/liquid interface.

It is called ‘‘growth rate’’ by organic crystal growers and usually is expressed in dimensional form as [�AA s�1].
According to the present method it can be computed on the basis of Eq. (17b) after the computation of the

protein concentration at the crystal surface according to Eq. (12)).

Eqs. (12), (16), (17a) and (17b) behave as �moving boundary conditions�, their solution being strictly

associated to the computational check on the value of / and its gradient. Note that, typically, for organic

crystal growth, the normal velocity at the interface is very small with respect to buoyancy induced velocities

even if the gravity acceleration is reduced of several orders of magnitude in space, and for this reason it

could be neglected with regard to the solution of the momentum equation (for further details on this aspect

see the order of magnitude analysis in Section 5.2).

4.4. Discretization

Eqs. (4)–(7) subjected to the initial and boundary conditions are solved numerically in primitive variables

by a control volume method. The domain is discretized with a uniform mesh and the flow field variables
defined over a staggered grid. Forward differences in time and upwind schemes in space (second order ac-

curate) are used to discretize the partial differential equations, obtaining (n superscript indicates time step):

V nþ1 ¼ V n þ Dt


�r � VVð Þ þ Scr2V þ Sc Ra

C
Cð0Þ

�
� 1

�
ig þ

Dsalt

D
Sc Rasalt

Csalt

Csaltð0Þ

�
� 1

�
ig

�n

� Dt
Sc
g
V nþ1 � Dtrpn; ð18Þ
Cnþ1 ¼ Cn þ Dt
�
�r � V C½ � þ r2C

�n
; ð19Þ
Cnþ1
salt ¼ Cn

salt þ Dt


�r � V Csalt½ � þ Dsalt

D
r2Csalt

�n
: ð20Þ

The orientation of the surface of the crystal is used in determining the face fluxes for the computation of C

at the crystal surface (Eq. (12)). The interface orientation depends on the direction of the volume fraction

gradient of the phase within the cell, and that of the neighbour cell (or cells) sharing the face in question.

In practice the unit vector n̂n results from the gradient of a smoothed phase field /
_

, where the transition

from one phase to the other takes place continuously over several cells. The smoothed phase field /
_

is

obtained by convolution of the unsmoothed field / with an interpolation function.

Depending on the interface�s orientation, concentration gradients are discretized by forward or

backward schemes. For this reason Eq. (12) in discretized form reads:
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a > 0; b > 0 : Cnþ1
i;j ¼

~kk 1þ d0ð Þ qP � qCC
nþ1
i;j =qS

� �
þ aCnþ1

iþ1;j=Dxþ bCnþ1
i;jþ1=Dy

h i
~kk qP � qCC

nþ1
i;j =qS

� 

=S þ a=Dxþ b=Dy

h i ; ð21aÞ
a < 0; b > 0 : Cnþ1
i;j ¼

~kk 1þ d0ð Þ qP � qCC
nþ1
i;j =qS

� �
� aCnþ1

i�1;j=Dxþ bCnþ1
i;jþ1=Dy

h i
~kk qP � qCC

nþ1
i;j =qS

� 

=S � a=Dxþ b=Dy

h i ; ð21bÞ
a > 0; b < 0 : Cnþ1
i;j ¼

~kk 1þ d0ð Þ qP � qCC
nþ1
i;j =qS

� �
þ aCnþ1

iþ1;j=Dx� bCnþ1
i;j�1=Dy

h i
~kk qP � qCC

nþ1
i;j =qS

� 

=S þ a=Dx� b=Dy

h i ; ð21cÞ
a < 0; b < 0 : Cnþ1
i;j ¼

~kk 1þ d0ð Þ qP � qCC
nþ1
i;j =qS

� �
� aCnþ1

i�1;j=Dx� bCnþ1
i;j�1=Dy

h i
~kk qP � qCC

nþ1
i;j =qS

� 

=S � a=Dx� b=Dy

h i ; ð21dÞ

Cnþ1
i;j is computed from Eq. (21a)–(21d) iterating up to reach convergence, then the phase variable is up-

dated using Eq. (16):

/nþ1
i;j ¼ /n

i;j þ Dt
~kk qP � qCC

nþ1
i;j =qS

� �
ðCnþ1

i;j =S � 1� d0ÞDs
qPDxDy

: ð22Þ

According to Eqs. (21a)–(21d) and (22), if the protein concentration is locally depleted, correspondingly,

the solid mass stored in the computational cell grows and the phase variable is increased; on the other hand

if mass stored in the cell begins to re-dissolve, protein is released in solute phase and the local value of

protein concentration is increased. These phenomena are driven by the attachment kinetic condition, i.e.,
the existing deposit grows if protein concentration is larger than S and the mass exchange is proportional to

the local value of the orientation-dependent kinetic coefficient; in the opposite situation, i.e., in case protein

concentration becomes smaller than S, deposit begins to re-dissolve. The solubility is function of the

precipitant agent (salt) concentration and for this reason the phenomena are mainly governed by the

distribution of this agent (i.e., by Eq. (20), or by temperature in case solubility modulation is induced by

thermal control).

In Eq. (22) Ds is the �reconstructed� portion of the solid wall �bounded� by the frontier of the control

volume (computational cell) located astride the crystal surface. The determination of Ds requires a well
defined �interface-reconstruction� technique (the shape of the crystal for a fixed time is not known a priori

and must be determined as part of the solution). A reconstruction is a geometrical approximation of the

true solid/liquid interface. Usually the interface can be approximated by a straight line of appropriate

inclination in each cell (PLIC piecewise linear interface approximation) and this reconstruction technique is

used for the present analysis. Various conditions can be used to determine the reconstruction, one of which

is a condition that the straight lines connect at cell-faces. With this condition, the resulting interface rep-

resentation becomes continuous. However, for strong distortions and topology changes similar to those

involved in organic crystal growth, this conditions becomes virtually unenforceable. If non-connecting
straight lines (each line is determined independently of the neighbour lines and their ends need not nec-

essarily connect at the cell-faces, see, e.g., Gueyffier et al. [15] and the PLIC method) are used, this guar-

antees maximum robustness and simplicity, and allows extension to three dimensions, while sacrificing little

in accuracy.
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Two conditions can be used for the straight line in cell ði; jÞ, which always yield an unambiguous so-

lution: (a) it is perpendicular to the interface-normal-unit vector n̂n and (b) it delimits a solid area �matching�
the given /n

i;j for the cell; i.e., the slope of the line is given by the interface normal (gradient of the volume

fractions), and the intercept follows from invoking volume conservation.

The reconstructed interface is then used to compute the fluxes (i.e., for the present case the mass flux of

‘‘growth units’’ that are incorporated by the crystal) necessary to integrate the volume evolution equations.

The computation of the velocity field at each time step is split into two substeps.

In the first, an approximate non-solenoidal velocity field V � which corresponds to the correct vorticity of
the field is computed at time ðnþ 1Þ neglecting the pressure gradient term in the momentum Eq. (18). In the

second substep, the pressure field is computed by solving the equation resulting from the divergence of the

momentum equation taking into account Eq. (4):

r2pn ¼ 1

Dt
r � V �: ð23Þ

This equation is solved with a SOR (Successive Over Relaxation) iterative method. For further details on

the numerical method, see, e.g., Monti et al. [42] and Savino et al. [43]. On the solid walls the oP=on ¼ 0
condition is imposed; at the crystal surface, this condition is discretized by forward or backward schemes

according to the interface�s orientation:

0 < / < 1; a > 0; b > 0 : Pi;j ¼
aPiþ1;j=Dxþ bPi;jþ1=Dy
� 


a=Dxþ b=Dyð Þ ; ð24aÞ
0 < / < 1; a < 0; b > 0 : Pi;j ¼
� aPi�1;j=Dxþ bPi;jþ1=Dy

� 

� a=Dxþ b=Dyð Þ ; ð24bÞ
0 < / < 1; a > 0; b < 0 : Pi;j ¼
aPiþ1;j=Dx� bPi;j�1=Dy
� 


a=Dx� b=Dyð Þ ; ð24cÞ
0 < / < 1; a < 0; b < 0 : Pi;j ¼
� aPi�1;j=Dx� bPi;j�1=Dy

� 

� a=Dx� b=Dyð Þ : ð24dÞ

Finally, the correct solenoidal velocity field is updated using the computed pressure field to account for

continuity:

V nþ1 ¼ V � � Dtrpn: ð25Þ

The protein and salt distributions at time ðnþ 1Þ are obtained from Eqs. (19) and (20) after the velocity

calculation.

Parallel supercalculus is used due to the enormous time required for the computations. Calculations dealing

with the behaviour of melts and/or phase change problems in fact often are very heavy (see, e.g. [31,32,44].

Superimposed on this is the fact that in the case of macromolecular crystallization it is necessary to simulate

very long times (the time required for the growth of protein crystals, in fact, is quite variable and may range

from a few hours in the best of cases to several months in others). The problem is split in two problems, one

parabolic and the other elliptic. A parallel algorithm, explicit in time, is utilized to solve the parabolic
equations (momentumand species equations). A parallel multisplitting kernel is introduced for the solution of

the pseudo-pressure elliptic equation, representing the most time-consuming part of the algorithm. A grid-

partition strategy is used in the parallel implementations of both the parabolic equations and themultisplitting

elliptic kernel. AMessage Passing Interface (MPI) is coded for interprocessor communications. For the sake
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of brevity the parallel implementation of the OCGVOF method is not described in detail. For further details

on parallel strategies, see, e.g., Lappa [45] and Lappa and Savino [46].

4.5. Validation

The code has been validated through comparison with the numerical results of Lin et al. [5]. They in-

vestigated the time-dependent diffusive–convective transport in an isothermal protein crystal growth system

at standard gravity. A rectangular crystal of dimensions 400 [lm]� 600 [lm] was positioned at the bottom

of a 1 [mm] high and 6 [mm] wide growth cell.

Since the increase of crystal volume during the five hours simulation was assumed to be negligible with

respect to the overall cell dimensions, a �fixed crystal� size was assumed in the numerical computations. The

same conditions have been simulated with the OCGVOF. A uniform grid of 300� 100 points has been used
in order to achieve high accuracy.

The present results show good agreement with the results of Lin et al. [5] (see, e.g., Fig. 1(a) to be

compared with Figs. 4(b) and 7(b) in the paper of Lin et al. [5]). The maximum velocity and the corner
Fig. 1. Comparison with the numerical results of Lin et al. [5]: isothermal protein crystal growth system under normal gravity con-

ditions (rectangular lysozyme crystal of initial dimensions 400 [lm]� 600 [lm] positioned at the bottom of a 1 [mm] high and 6 [mm]

wide growth cell). Protein concentration distribution [g cm�3] and velocity field: (a) t ¼ 1 [h], (b) t ¼ 4 [h].
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growth rate at t ¼ 18000 [s] are 8.1� 10�4 [cm s�1] and 41 [�AAs�1] in good agreement with the values ob-

tained by Lin et al. [5] (8.6� 10�4 [cm s�1] and 44 [�AAs�1], respectively). The small difference between the

present results and those obtained by Lin et al. [5] could be explained according to the fact that during the

five hours simulations the crystal undergoes small dimensional changes (Fig. 1(b)) that were not taken into

account in the model of Lin et al. [5] and/or by the fact that a very dense mesh has been used for the present

simulations. Further validation, moreover, has been provided through comparison with experimental re-

sults (see Section 5.1).

4.6. Discussion

The volume tracking and enthalpy methods, become so popular in the last years, are single region

formulations. In the present paragraph, the OCGVOF method is briefly compared with these methods with
which it shares some features. Moreover the applicability of the method is discussed.

Volume of fluid methods do not use marker particles. The liquid volume-fraction field /, is used. It

indicates for each computational cell its liquid fraction (e.g., / ¼ 1 liquid, / ¼ 0, gas and 0 < / < 1 for an

interfacial cell). The key element for a volume of fluid method is its technique for advecting /: standard
finite-difference methods suffer from numerical diffusion, which would soon smooth / excessively. The /-
field is the only phase information stored in volume of fluid methods. Approximate interface locations are

found from a so-called interface reconstruction. This is needed for �advecting� / (a transport equation is

solved at each time step to determine the relative position of the different phases, i.e., the /-distribution),
for determining the local properties of the fluid (e.g., viscosity) and for better graphical representation.

In a phase-field model for the thermal solidification of a liquid (�enthalpy method�), similarly to the case

of volume of fluid methods, a phase-field variable / which varies in space and time is introduced to

characterize the phase of the material. Contrary to the case of volume of fluid methods, however, in this

case the phase-field variable / is not �advected� by the motion of the fluid, but computed as function of the

temperature distribution. An energy partial differential equation applied throughout the computational

domain and taking into account the release or absorption of latent heat associated to the phase change,

governs the evolution of /.
In the volume of fluid methods, / is �advected� solving an appropriate continuity transport (i.e. volume

tracking) equation, in the enthalpy methods / is computed as function of the temperature obtained solving

an appropriate energy equation taking into account the release or absorption of latent heat, in the OC-

GVOF method, / is computed using attachment kinetics at the surface of the crystal i.e. it is computed

taking into account the phenomenon of addition/incorporation of solute molecules (building blocks or

growth units) to the crystal. These conditions lead to the introduction of a group of differential equations

for the protein concentration at the crystal surface and the evolution of the solid mass displacement.

The OCGVOF technique shares with the aforementioned classical methods the interface orientation
analysis, that in these methods is needed to compute the surface tension force perpendicular to the interface

separating the fluid-phases (expressed as a corresponding volume force, which can be included in the

momentum equation), whereas in the OCGVOF method it is needed for the orientation-dependent kinetic

coefficients and the discretization of the protein concentration gradients perpendicular to the surface (fluxes

of nutrients). Moreover it shares with the enthalpy methods the technique used to accommodate the zero

velocity condition in liquid regions turning to solid phase (the so-called �mushy� regions). This discussion
clarifies the analogies and differences among these methods.

It is also interesting to point out how the ideas and concepts at the root of the OCGVOF technique have
led to the introduction of a similar method for the simulation of the growth of organic ‘‘living’’ tissues in

bioreactors. In this case however the mathematical model is quite different since the living-construct ex-

hibits high sensitivity to the effect of the fluid-dynamic shear stress at the surface (shear-stress dependent

kinetics). In the case of macromolecular crystals the growth units are merely ‘‘added’’ to the solid (the
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molecules orient and attach themselves to the growing surface) without changing their initial composition.

In the case of biological tissues of course the mechanism is more complex. The growth units are incor-

porated and ‘‘converted’’ into the main tissue components. Consequently tissue enlargement occurs due to

‘‘internal cell division’’ and ‘‘production of extracellular matrix’’ supported by the aforementioned incor-

poration of nutrients in the biological cells. The surface shear stress acts modifying the manner with which

absorbed nutrients are used to produce the new cells and the extracellular matrix (it induces changes in the

tissue metabolism and function eliciting a physiologic response from the biological cells, see, Lappa [47] for

further details on the modelling of these aspects and the related volume tracking method).
Note that, in principle, since constant phase densities are assumed, the OCGVOF method provides

reliable results only if the decrease of solution volume due to the advancing interface is negligible. In the

case of inorganic crystal growth, since solvent inclusions in the solid mass are very small, this would occur if

the decrease of solution volume was only a few per cent of its initial volume (i.e. if the crystal undergoes

only small dimensional changes with respect to the overall dimensions of the cell containing the feeding

solution). Fortunately this problem is not remarkable for the case of protein substances. Protein crystals, in

fact, have widely open structures and incorporate up to 90% by volume of solvent within the network of

protein molecules. Macromolecular crystals are mainly composed of solvent. The protein occupies the
remaining volume so that the entire crystal is in many ways an ordered gel with extensive interstitial spaces

through which solvent and other �small� molecules may freely diffuse (see, e.g. [35,37]).
5. Results

Hen egg-white lysozyme is used as model protein, being a well-characterized molecule (see Table 1 for

the properties). The precipitant agent is NaCl. The tetragonal form of hen egg-white lysozyme typically
grows in a habit formed by a combination of prismatic (1 1 0) and pyramidal (1 0 1–0 1 1) faces (see, e.g. [2]).

In order to show the capabilities of the numerical method, its robustness and versatility and how it can

deal with very different situations, two �typical� cases are considered. In the first case, analysis of growth

habit change is carried out in the case of micro-crystals having size of the order of 50 [lm] (study of the

microscopic facet morphologies) for typical experimental conditions and in absence of convection (diffusive

transport). In the second case, the growth of a lysozyme macro-crystal (size 1 [mm]) is investigated under

the effect of buoyancy convection induced by typical values of residual gravity occurring on orbiting space

platforms (e.g., the Space Shuttle or the International Space Station).
In order to characterize the interplay of surface attachment kinetics and mass transport (diffusive/

convective) in liquid phase a non-dimensional parameter is introduced.
Table 1

Properties and operating conditions

Dlys [cm
2 s�1] 10�6

DNaCl [cm
2 s�1] 10�5

m [cm2 s�1] 8.63� 10�3

qC [g cm�3] 1.2

blys [g
�1 cm3] 0.3

bNaCl [g
�1 cm3] 0.6

qP [mg ml�1] 820

k [�AA s�1] ffi10

d0 [–] 2

T [�C] 18

pH 4.5
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If attachment kinetics is the rate-limiting step in the growth process, Ci ¼ CB (CB – bulk protein con-

centration) and the local supersaturation will be approximately the bulk supersaturation. On the other

hand, if the growth rate is limited by transport (convective or diffusive) of solute to the growth interface,

Ci ¼ S. These processes can be characterized by use of a surface coefficient c defined as

c ¼ CB � Cið Þ
CB � Sð Þ ð26Þ

this coefficient is a measure of the relative importance of surface kinetics versus transport as the rate-

limiting step in the growth of crystals. For growth controlled by surface kinetics Ci ! CB and c ! 0; for a

transport controlled process, Ci ffi S and c ! 1.
Transport and surface kinetics processes can be considered competitive for c ffi 0:3 to 0:5.

5.1. Growth habit simulation and microscopic facet morphology study

In order to obtain crystals of high compositional uniformity it is important that the growth rate is kept

constant over the whole advancing interface, i.e., that the crystal shape remains unchanged during growth.

The conditions required for morphological (i.e., shape) stability of interfaces are well understood for the

diffusive �transport-limited� growth of non-faceted crystals (in this case, particle growth is mainly controlled

by mass transport to the interface and the growth behaviour depends on the local mass flux at the interface,

Rosenberger [37]). There the growth kinetics are rather isotropic and interfacial processes are relatively

unimportant for the stability. However most protein crystals, when grown not too rapidly, are faceted and

the present paragraph deals with the shape evolution of precipitate particles in this case (�faceted growth�).
This implies that the growth kinetics are anisotropic, i.e., that the kinetics of incorporation at the crystal

surface are strictly linked to the different crystallographic directions. Then morphological stability is

governed by the interaction between the non-uniform interfacial processes and mass transfer to the in-

terface.

The experimental results of Monaco and Rosenberger [2] are considered for comparison.

Monaco and Rosenberger [2] found experimentally that the habits of lysozyme crystallites and larger

crystals (up to 500 [lm]) were bound by (1 0 1 or 0 1 1) and (1 1 0) faces (see Fig. 2). This overall habit

formed regardless of the supersaturation prevailing during nucleation and growth. However, the aspect
ratios of the (1 1 0) faces were found to be dependent on the growth conditions. At low rs, the distance

between opposite (1 0 1–0 1 1) pyramids far exceeded the distance between opposite (1 1 0) faces. At high rs,
Fig. 2. Tetragonal form of hen egg-white lysozyme typically growing in a habit formed by a combination of prismatic (1 1 0) and

pyramidal (1 0 1–0 1 1) faces.
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the reverse occurred. They found differences in the average growth rate (h) of adjacent faces according to

the space-orientation of the faces and according to the value of the supersaturation. In particular the

macroscopic growth rates were found to be almost equal for rð0Þ < 8 with the (1 1 0) growth rate located

below the (1 0 1) one (e.g., h1 0 1 ¼ h0 1 1 ¼ 1:3h1 1 0 for rð0Þ ¼ 6), whereas the opposite situation occurred for

rð0Þ > 8 with h1 1 0 far located above h1 0 1 (h1 1 0 ¼ 1:86h1 0 1 for rð0Þ ¼ 11).

According to Monaco and Rosenberger [2], the observed phenomena for rð0Þ 6 11 were controlled

mainly by surface attachment kinetics (interface kinetically limited phenomena); therefore it is reasonable

to assume that the different behaviour of the differently oriented faces were strictly associated to different
values of the kinetic coefficient. In the case of pure kinetically driven situations, the kinetics of incorpo-

ration at the crystal surface are strictly linked to the bond configuration of the crystallographic structure

whereas other effects are negligible. This is a simplified case of the more general situation that can be

handled by the mathematical model presented in Section 4.3.

The numerical results presented in this paragraph have been obtained for two different situations. In the

first case ðrð0Þ ¼ 6Þ, the kinetic coefficients (in literature this value is affected by a large uncertainty, many

investigators found values around 10�7 [cm s�1]) k1 0 1 ¼ k0 1 1 ffi 1:5� 10�7 [cm s�1] and k1 1 0 ¼ 0:75k1 0 1 are
assumed for the different faces of the crystal (this corresponds to Monaco and Rosenberger�s rð0Þ <8
condition). For the second case ðrð0Þ ¼ 11Þ, the orientation-dependent crystal growth is simulated by as-

suming k1 0 1 ¼ k0 1 1 ffi 10�7 [cm s�1] and k1 1 0 ¼ 1:86k1 0 1 (this information being extrapolated from the

experimental behaviour of the kinetically limited average growth rates).

In the experiments of Monaco and Rosenberger [2] crystal growth was obtained from a supersaturated

solution with Clysð0Þ ¼ 5� 10�2 [g cm�3] and solubility modulation was controlled by temperature. For the

present simulations solubility modulation is induced by setting an appropriate salt concentration whose

value is supposed to be constant in the bulk liquid phase. The dependence of S of lysozyme on CNaCl has

been determined experimentally by other investigators (see, e.g. [48]). Correspondingly the values of CNaCl

needed to obtain rð0Þ ¼ 6 and rð0Þ ¼ 11 and used for the present numerical simulations, are

CNaClð0Þ ¼ 2:65� 10�2 [g cm�3] and CNaClð0Þ ¼ 3:3� 10�2 [g cm�3], respectively. For both the cases a seed

crystal having a size of 50 [lm] is placed in the centre of a computational domain having a width of 103 [lm]

and the concentration of protein is supposed to be constant at the initial time. The frontier of the com-

putational domain is supposed to be impermeable to protein and salt. A grid 200� 200 is used to achieve

good resolution.

The results, grouped in Fig. 3 (rð0Þ ¼ 6) and Fig. 4 ðrð0Þ ¼ 11Þ show the different growth habit of the

crystals according to the value of the supersaturation and according to the corresponding surface kinetic
coefficient distribution.

The computed face growth rates versus time are shown in Figs. 3(b) and 4(b). The computed time-av-

eraged growth rates (r ¼ 6; h1 0 1 ffi 18 [�AAs�1], r ¼ 11; h1 1 0 ffi 59 [�AAs�1]) are in good agreement with the

experimental ones (r ¼ 6; h1 0 1 ffi 21 [�AAs�1], r ¼ 11; h1 1 0 ffi 65 [�AAs�1]).

Finally Figs. 3(d) and 4(d) show the time-evolution of the parameter c. Since c < 0:2, these plots confirm
the assumption of Monaco and Rosenberger [2] (i.e., that the phenomena under investigation were mainly

driven by attachment kinetics) and at the same time provide further validation and justification for the

numerical results and the agreement with the experimental ones (in fact, in principle, the relative ratio of the
kinetic coefficients for the different faces can be extrapolated from experimental macroscopic averaged

growth rates only if the phenomena are kinetically limited). Either experimental observation either nu-

merical modelling exhibit comparable evidences of the phenomena under investigation. Quantitative

comparison between experimental observation and numerical simulations provides a validation of the

present mathematical model and gives insights on the crystallization process, providing, for instance,

evaluation of the kinetic coefficients; the uncertainty related to the value to assign to the kinetic coefficients

(in literature located around 10�7 [cm s�1]), in fact can be overcome (through OCGVOF) changing these

values up to match exactly the macroscopic experimental growth rates.



Fig. 3. Growth habit simulation and microscopic facet morphology study of a faceted seed of lysozyme: Clysð0Þ ¼ 5� 10�2 [g cm�3],

CNaClð0Þ ¼ 2:65� 10�2 ðrð0Þ ¼ 6Þ, k1 0 1 ¼ k0 1 1 ffi 1:5� 10�7 [cm s�1], k1 1 0 ¼ 0:75k1 0 1: (a) snapshots of the crystal shape versus time

(Dt ¼ 1220 [s]); (b) growth rate of the 1 0 1 face versus time; (c) crystal size along� versus time; (d) c versus time.
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5.2. Macroscopic growth and convective transport

Crystals of biological macromolecules are obtained by precipitation from super-saturated solutions and
for this reason crystallization can be influenced by gravity. Concentration (density) gradients exist in the

crystallizing solutions (as an intrinsic consequence of the crystal-growth process). The growth process, in

fact, depletes of protein the liquid surrounding the growing crystal; the related concentration gradient

implies a density gradient that, in presence of gravity, induces buoyancy driven convective flow.



Fig. 4. Growth habit simulation and microscopic facet morphology study of a faceted seed of lysozyme: Clysð0Þ ¼ 5� 10�2 [g cm�3],

CNaClð0Þ ¼ 3:3� 10�2 ðrð0Þ ¼ 11Þ, k1 0 1 ¼ k0 1 1 ffi 10�7 [cm s�1], k1 1 0 ¼ 1:86k1 0 1: (a) snapshots of the crystal shape versus time (Dt ¼ 510

[s]); (b) growth rate of the 1 1 0 face versus time; (c) crystal size along y versus time; (d) c versus time.
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These phenomena occur also during experiments in space. In fact, the residual gravity estimated on

board the space-shuttle and the International Space Station (ISS) is not zero, but typically of the order of

10�5 of earth gravity. Therefore these effects have to be evaluated also under microgravity conditions, in

order to properly prepare and interpret the results of crystal growth experiments in space.

In the present paragraph, the growth of a seed macro-crystal of lysozyme under micro-gravity conditions

is simulated. For the sake of simplicity (aim of the present paper is merely to show the capabilities of the

numerical method and how it can �capture� heretofore poorly understood physics and mechanics of the

problem under investigation) the initial shape of the seed crystal is supposed to be quadrate and the kinetic
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coefficient is supposed to be the same for the different sides of the crystal (however the numerical method

can handle complex shapes and surface-orientation-dependent growth as shown in Section 5.1). Moreover

though the acceleration environment on the ISS exhibits a rich variation in magnitude and orientation over

the course of a mission with a broad range of frequency content, (see, e.g. [49–52]) a residual (steady)

g ¼ 10�4g0 (100 [lg]) oriented in a single direction is considered. This is a simplistic and conservative as-

sumption. The detailed investigation of the changing orientation of the quasi-steady component of accel-

eration, the presence of g-jitters with or without vibration isolation, etc. is out of the scope of the present

work and is delayed to forthcoming analyses.
In order to discern the effect of convection with respect to other effects, the same simulation is carried out

under pure diffusive regime (i.e., absence of convection).

The crystal (1 [mm]� 1 [mm]) is supposed to be fixed (e.g., by glue) to the mean point of the left wall of

the reactor (10 [mm] high and 30 [mm] wide test cell) used for the growth process (see Fig. 5). Growth is

obtained from a super-saturated solution with Clysð0Þ ¼ 5� 10�2 [g cm�3] and CNaClð0Þ ¼ 2:5� 10�2 [g cm�3]

(rð0Þ ffi 5). The frontier of the domain is supposed to be impermeable to the protein.

Table 2 shows a grid refinement study carried out to ensure good resolution and grid-independence of

the results (grid-independence is achieved for a mesh of 300� 100 points).
Fig. 5. Effect of the size of the reactor on the non-dimensional parameter c (diffusive conditions).

Table 2

Grid refinement study (maximum growth rate and maximum velocity as function of the number of grid points at t ¼ 6:0� 105 [s])

Grid hmax [�AA s�1] Vmax � 105 [cm s�1]

100� 33 3.578 2.297

150� 50 4.820 3.214

200� 75 5.967 4.121

300� 100 6.529 4.879

400� 130 6.576 4.932
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Fig. 5 shows that, since for the case under investigation c ffi 0:3 to 0:4, surface attachment kinetics and

mass transport in liquid phase can be considered competitive in limiting the growth rate.

Regarding this aspect (that is crucial for the problem under investigation), the same simulation has been

repeated halving the dimensions of the system in order to shed some light about the effect of the size of the

reactor on the non-dimensional parameter c. Fig. 5 shows that large systems tend to exhibit transport-

dependent (limited) growth rates (c tends to be high) whereas small systems tend to be governed by surface

attachment kinetics (for these systems c is small; this behaviour is also confirmed by the results described in

Section 5.1, see, e.g., Figs. 3(d) and 4(d)).
This trend can be explained according to the fact that, if the dimensions of the system are increased, a

high time is required to transport available protein (in solute phase) from far regions (i.e., the frontier of the

reactor) towards the crystal surface. This increases the relative importance of mass transport with respect to

surface attachment kinetics in limiting the growth rate.

As a crystal grows from the solution, it depletes the concentration of the growth units that are incor-

porated into the crystal lattice producing a concentration-depleted zone around it. In this region, the solute

concentration changes continuously from the concentration at the crystal face to the concentration in the

bulk of the solution. The concentration profile in the concentration-depleted zone varies with time as the
crystal grows and is controlled by the balance between the flow of growth units towards the crystal face and

the rate of incorporation of these growth units into the crystal lattice. The kinetics of incorporation at the

crystal surface are linked to the bond configuration of the crystallographic structure as discussed in par-

agraph 5.1 (for the present case of isotropic growth, the kinetics of incorporation are simply linked to the

value of the kinetic coefficient and to the supersaturation level), while the flow towards the crystal face is

highly dependent on the mass-transport properties in the bulk solution (diffusive or convective), which turn

out to be crucial for the overall crystal-growth process.

In case convection is absent, Fig. 6(b) shows that the face growth rate drops with increasing face size
(correspondingly, in Fig. 6(a), the size of the crystal tends to an asymptotic constant value). This behaviour

can be explained according to two effects:

(a) the finite volume of the test cell (the amount of solute protein available for the growth of the solid

phase is finite and decreases as time passes); (b) as the size of the face increases, more solute should be

added to maintain a given face growth rate.

Fig. 6(a) shows deviation from diffusion-controlled growth (which would show a square-root depen-

dence of the crystal size on time). This illustrates the fact that even when diffusive transport is ensured, no

guarantee exists that the crystal will grow in the diffusion-controlled regime: the growth regime is a function
of the ratio between diffusion transport and surface attachment kinetics.

Figs. 6(c) and (d) show that after a short initial transient, c decreases. This is due to diffusive transport

that decreases in intensity the concentration gradient between the crystal and regions far from its surface

(in �finite size� systems the relative importance of mass transport in liquid phase with respect to sur-

face attachment kinetics decreases as time passes due to the decrease of available protein and related

gradients).

The above results refer to macroscopic parameters; from a �local� point of view, the simulations show

that corners and edges of the crystal are more readily supplied with solute than the centre of faces (this leads
to a macroscopic depression around the centre of the faces, see Figs. 7(a) and 8). This is due to the diffusive

pattern of the protein concentration field around the crystal. Incorporation of the solute into the crystal

causes a local depletion in concentration and a solutal concentration gradient to form between the bulk

solution and the growth interface. The �steepness� of the gradient determines the rate of solute transport to

the growth interface, the steepness being maximum around the corners. Superimposed on this is the fact

that a protuberance on the interface sees a higher supersaturation and grows faster than a depression,

which sees a lower supersaturation. Note that the existence of �depressions� around the centre of the faces of

growing crystals (shown by the present numerical results) has been often observed experimentally (Monaco



Fig. 6. Isothermal protein crystal growth system under diffusive and microgravity (convective) conditions (crystal of initial dimensions

1 [mm]� 1 [mm] fixed to the left wall of a 3 [cm] high and 1 [cm] wide growth cell; Clysð0Þ ¼ 5� 10�2 [g cm�3] and CNaClð0Þ ¼ 2:5� 10�2

[g cm�3]): (a) average size (along y) versus time; (b) growth rate versus time; (c) c versus time; (d) c versus crystal size.
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and Rosenberger [2]). Fig. 7(a) shows that the difference in gradient steepness between face corner and face

centre (and consequently the �depth� of the depressions) is proportional to the size of the crystal.

If the presence of convection is taken into account a flow field is driven by the density gradient around
the growing crystal. Since isothermal conditions are assumed throughout the growth process, only com-

positional non-uniformities, that evolve in the solution due to the crystallization process, act as source for

buoyancy-driven convection. This flow field modifies the protein distribution around the crystal leading to

a non-symmetrical concentration pattern (Fig. 9). One recognizes the well-known convective flow pattern

for solution growth with a rising �plume� above the crystal. When growth sets in, the solute concentration



Fig. 7. Growth habit simulation of a seed of lysozyme (Clysð0Þ ¼ 5� 10�2 [g cm�3], CNaClð0Þ ¼ 2:5� 10�2Þ: (a) diffusive regime, snap-

shots of the crystal shape versus time (Dt ¼ 7:7 104 [s]), (b) microgravity convective conditions, snapshots of the crystal shape versus

time (Dt ¼ 3:5 104 [s]).
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around the crystal seed decreases. With this depletion of the heavier solute, the solution around the crystal

becomes lighter and, thus, rises.
Fig. 9 show that the convective cell however does not extend throughout the bulk of the protein chamber

and is confined to the zone between the right face of the growing crystal and the right wall of the test cell.

As time passes, the vortex roll shrinks while migrating towards the right wall of the protein chamber (see

Fig. 9). The contraction of the cell and its progressive confining to a zone close to the right wall are strictly

related to the behaviour of the crystal that puffs out due to growth.

Fig. 6(b) shows that, during the first part of the growth process, the growth rate under the effect of

convection is considerably higher than under diffusive conditions. The growth rates decrease with in-

creasing growth time and crystal size (the decrease being more rapid in the diffusion-dominated case). This
is due to the effects already pointed out for the case of absence of convection.

The growth rate under the effect of convection is located above the corresponding one obtained under

diffusive regime since convection enhances mass transport in liquid phase thus increasing the rate of in-

corporation of the solute into the crystal.



Fig. 8. (a) Curvilinear abscissa along the crystal surface, (b) surface growth rate distribution under diffusive and microgravity (con-

vective) conditions.
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In addition to these effects one must keep in mind that there is an effect related to the fact that the

magnitude of the flow is directly proportional to the size of the face upon which it is being generated. Thus,

as crystal grow, solutal gradient driven flows can become a major factor for the growth rates.

As time passes, however an inversion occurs in the behaviour described above (Fig. 6(b)). The growth

rate under diffusive regime becomes higher than the convective ones. This behaviour is strictly related to

the �finite� amount of protein available for the crystal growth (i.e., the �finite� reactor size). At the beginning

the convective growth rate is located above the diffusive one since solute protein is transported towards the
crystal surface more rapidly with respect to a pure diffusive situation (convective motion causes fluxes in the

bulk of the solution that exceed the mere diffusive ones). Due to this effect, however, the effect of the �finite�
cell size is enhanced.

In the case of reactors having an �infinite� size, the convective growth rates would be always located

above the diffusive ones during the crystal growth process. However if the initial amount of protein

available for the growth is finite, this does not happen. This explains why after an initial transient time the

diffusive growth rate becomes higher than the convective one and at the same time could explain some

contradictory results in literature. Ot�aalora et al. [4] found a decrease of the growth rates under the effect of
convection; this result is in contrast with the generalized idea that convection enhances mass transport in

liquid phase increasing the growth rate. According to the present results, this counterintuitive behaviour

could be explained by the finite size of their reactor.



Fig. 9. Snapshots of growing crystal, concentration distribution and velocity field under microgravity conditions (g ¼ 10�4g0): (a)
t ¼ 3:5� 104 [s], (b) t ¼ 7� 104 [s], (c) t ¼ 10:5� 104 [s], (d) t ¼ 14� 104 [s], (e) t ¼ 2:8� 105 [s], (f) t ¼ 4:9� 105 [s], (g) t ¼ 8:75� 105

[s], (h) t ¼ 1:26� 106 [s], (i) t ¼ 1:64� 106 [s], (j) t ¼ 2:0� 106 [s], (k) t ¼ 2:42� 106 [s], (l) t ¼ 2:8� 106 [s], (m) t ¼ 3:19� 106 [s], (n)

t ¼ 3:5� 106 [s].
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Figs. 6(c) and (d) clearly show (as expected) that the parameter c for the case of convection is located

below the corresponding one obtained in the case of diffusive conditions (convection reduces the time re-
quired to transport available protein from far regions towards the crystal surface and this decreases the



Fig. 9. (continued)
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relative importance of mass transport with respect to surface attachment kinetics in limiting the growth

rate).

Fig. 6(b) shows moreover that the �face� (average) growth rate exhibits a different value according to the

orientation of the face with respect to the direction of the residual g.

This clearly demonstrates that orientation-dependent growth may occur even if the dependence of the

kinetic coefficients on the orientation of the faces is neglected. In this case, it is due to the non-symmetrical



Fig. 9. (continued)
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concentration pattern around the crystal distorted by the effect of convection according to the direction of
the residual g. The growth rate is strongly affected by the mass transport in liquid phase and g-orientation-

dependent growth occurs.

Fig. 7(b) shows that the increase of volume of the crystal is more pronounced for the bottom side than

for the upper side. Fig. 8 shows in detail how the convection effect results in higher local growth rates near

the surface where the flow is incoming and lower local growth rates near the surface where the flow is

outgoing. This behaviour can be explained according to two different effects.

Due to the convective structure of the flow pattern, in fact, liquid is transported towards the bottom side

and in opposite direction around the upper side. According to this behaviour, liquid regions where the
amount of protein available in liquid phase is still large are transported towards the bottom side of the

crystal. This increases the growth rate of the lower face (a large amount of protein in solute phase is

available for crystal growth). On the other hand, due to the outgoing flow, the depletion zone close to the

upper face is distorted and elongated towards the top of the test cell (�plume�). This leads to a decrease of

the concentration gradient (the depletion layer becomes thinner with respect to the bottom side of the

crystal) and hence to a decrease of the mass exchange flux between solid and liquid phase. This explains the

occurrence of a higher value of the growth rate on the bottom face.

The analysis of the surface growth rate distribution in Fig. 8 shows, as for the case of diffusive regime,
that the growth rate is non-uniform across the crystal faces. As expected, the growth rate is always lower at

the centre than at the corners where the convective flows (and the associated shear stresses) are the

strongest, and hence, the interfacial concentration gradients the steepest. However the growth rate distri-

bution is not symmetric and, in particular, the maximum of the growth rate occurs at the corner B.

Qualitatively, the predicted higher growth rates at crystal corners are consistent with experimental ob-

servations on lysozyme [37].
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According to the results described and discussed above, one can speculate that the faster (high super-

saturation) a crystal grows the more readily it can lose morphological stability (formation of macroscopic

depressions).

The bigger a crystal, the lower may be the critical growth rate for morphological instability.

On the other hand the convective transport in the solution, that also depends on the size of the crystal

and/or of the reactor, can influence the growth (morphological stability) behaviour.

For the sake of brevity, however, parametric analyses of the effect of the initial size and position of the

seed, of the size of the reactor, of the initial protein concentration, of the initial supersaturation level, of the
orientation and intensity of the residual-g, etc. are delayed to forthcoming papers.

At this stage a discussion of the order of magnitudes of the velocity of the moving interface and of the

buoyancy-induced velocities in the bulk of the protein reactor can be carried out in order to provide the

necessary justification for the assumption of negligible interface velocity in Section 4.3. The order of

magnitude of the buoyancy induced-velocity in the bulk is given by: Vg ¼ gblysDCL
2=m, where DC is the

(average) concentration difference between the surface of the crystal and the top (bulk) of the protein

chamber (according to the numerical simulations, during the growth process DC ffi Oð10�3Þ [g cm�3], see

Fig. 9). Therefore for the present case (see Table 1) Vg ffi 10�1g: so in the range of 1 [g] to 1 [lg], the order of
magnitude is reduced from O(102) [cm s�1] to O(10�4) [cm s�1]. On the other hand, the normal velocity at

the crystal interface Vn is of the order O(10�7) [cm s�1] (the time required to increase the size from 1 [mm] to

3.5 [mm] is about 3� 106 [s], see Figs. 6(a) and (b)). Therefore it is very small even if compared to the case 1

[lg]. This provides reliability for the present assumption of Vn ffi 0 in the case of 100 [lg].
It is worthwhile to stress how in the specific case of lysozyme, the computational model can be easily

further improved by taking into account the incorporation of the precipitant agent in the solid crystal

according to the excellent model proposed by Lin et al. [5]. Other simulations can be carried out, moreover,

about the case of salt concentration non-constant in the reactor (e.g., salt diffusing in the test cell through a
membrane or a agarose gel interface, etc). Furthermore the method can be used to investigate the case of

many interacting crystals (usually in fact the growth process is associated to multiple nucleation events; see,

e.g. [53–55] and the problem exhibits a high topological complexity) and/or different growth configurations

(e.g., drops on depression spot plates and hanging drops) where other types of convection (e.g., Marangoni

flow) may influence the growth process.

Second order spatial accuracy and first order temporal accuracy have been achieved for the present

computations respectively. Of course, second order (and even more accurate) temporal implementations

would be possible (see, e.g., the excellent Rider and Kothe [9] see in particular their page 118). This will be
the subject of forthcoming analyses where some possible variations and improvements of the present

method will be discussed and elucidated in the framework of level set and VOF methods. The present paper

shows the ‘‘bone structure’’ of the technique. Further numerical studies in fact are in progress along these

lines. The PLIC piecewise linear interface approximation used for the present computations, coupled with

the second-order time integration scheme should result in a more accurate algorithm. This can be seen as an

interesting and intriguing additional refinement of the present method.
6. Conclusions

A heretofore unseen mathematical model has been carefully developed for the case of macromolecular

(protein) substances that are extremely complex physical-chemical systems whose properties may vary as a

function of many environmental influences.

A novel volume tracking method specifically designed for the case under investigation has been intro-

duced and applied to several �typical� situations. This method, that eliminates the need for separate

equations in each phase, by establishing conservation equations which are universally valid, allows a
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fixed-grid solution to be undertaken and is therefore able to utilize standard solution procedures for the

fluid flow and species equations directly, without resorting to mathematical manipulations and transfor-

mations (this feature, on the other hand, facilitates a parallel implementation of the code based on a grid

partition strategy).

In the OCGVOF method, the �phase field� / is computed using incorporation kinetics at the surface of

the solid mass, i.e., it is computed taking into account the phenomenon of addition/incorporation of solute

molecules (building blocks or growth units) to the crystal. The kinetic conditions in fact are coupled to the

exchange mass flux at the interface and lead to the introduction of a group of differential equations for the
protein concentration at the crystal surface and the evolution of the solid mass displacement. The growth

velocity is not directly imposed but it results from internal conditions related to solute transport.

The analogies and differences among this method and previous �moving boundary� methods have been

pointed out.

For a realistic description, anisotropy in interface kinetics has been considered. This situation occurs for

crystalline proteins which have high anisotropy (preferred orientations) in either their surface energy or

atomic attachment kinetics. The method has been proved to be able to predict shape morphology insta-

bilities (i.e., habit change) according to the (experimentally found) dependence of the face growth rates on
the level of supersaturation (in the case of attachment kinetics dominant in limiting crystal growth rate) as

well as the onset of surface depressions due to diffusive and/or convective effects in the case of incorporation

kinetics and mass transport competitive in limiting the growth rate.

For this case an analysis of the distribution of the local growth rate along the sides of the crystal has been

carried out. The growth rate has been found to be non-uniform across the crystal faces (growth rate always

lower at the centre than at the corner) irrespective of the prevailing transport (diffusive or convective) mode

with the asymmetry more evident however for the convective case.

This follows since the �steepness� of the concentration gradient determines the rate of incorporation of
the solute into the crystal (the steepness being maximum around the corners for the diffusive case). The

larger asymmetry in the case of presence of convection has been explained according to the fact that around

the corners the convective flows are very strong and tend to increase the steepness of the concentration

gradient there.

For the first time the (still unknown in literature and contradictory) relative importance of surface at-

tachment kinetics and mass transport in liquid phase has been discussed through the computation of the

�quantitative� parameter c. This parameter is increased if the dimensions of the system under investigations

are increased and for a fixed system it is decreased by the effect of convection.
This trend has been explained according to the fact that, if the dimensions of the system are increased, a

high time is required to transport available protein (in solute phase) from far regions (i.e., the frontier of the

reactor) towards the crystal surface whereas, if convection enhances mass transport, this time is reduced.

The effect of typical microgravity conditions has been investigated. A concentration depletion zone of

considerable width develops about the growing crystal. Such solutal boundary layers are responsible for the

onset of convection under the effect of residual gravity acceleration. The less dense layer adjacent to the

growth interface in fact tends to rise, causing a convective flow to occur about the growing crystal which

considerably alters the boundary layer conditions. Convection in fact strongly changes the (diffusive)
concentration distribution about the crystal. Depending on its strength and direction with respect to the

crystal surface, convection has been observed to modify growth rates and morphological stability with

respect to diffusion controlled (bulk) transport.

The effect of convection on the macroscopic growth rate has been proved to be not trivial. It is strictly

coupled to the effect of the �finite� size of the reactor where crystallization is carried out.

Convection enhances mass transport in liquid phase thus increasing the rate of incorporation (growth

rate) of the solute into the crystal, but at the same time, it can lead to a more rapid decrease of the finite

amount of protein available in solute phase and thus to a decrease of the macroscopic growth rate.
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An important parameter is the relative direction of the residual gravity vector relative to the different

facets, which induces varying conditions for each facet. The isotropic solutal field around a crystal is de-

formed by gravity. This leads to flow parallel to the vertical facets and to pluming on the upper horizontal

one. Different facets, therefore, grow with different growth rates.

The convection effect results in higher local growth rate near the surface where the flow is incoming and

lower local growth rate near the surface where the flow is outgoing. This clearly demonstrates that ori-

entation-dependent growth may occur even if the dependence of the kinetic coefficients on the orientation

of the faces is neglected. In the case of surface attachment kinetics and transport in liquid phase competitive
in limiting the growth rate, the present simulations show that the growth rate is strongly influenced by the

mass transport in liquid phase and g-orientation-dependent growth occurs.

The role of the changes in the size of the crystallization sample in determining the intensity of the

convective field (the magnitude of the flow, in fact, is directly proportional to the size of the face upon

which it is being generated) and its structure (the increasing size of the crystal leads to a confinement of the

convective cell) has been pointed out.

Many investigators found that growth was limited by surface kinetics alone. The present results have

shown that claims that �the role� of mass transport in liquid phase across the depletion layer can be
eliminated are fluid-dynamically unsupportable. Crystal growth rates have to be considered in terms of

both mass transport and attachment kinetics. The simulations, however, confirm that for protein crystals

which grow relatively slowly and for typical dimensions of the reactors used for growth (of the order of few

millimetres or centimetres), mass transport in liquid phase, dependent primarily on physical forces and

movements in the solution phase, is almost certainly the less important of the two (for all the cases in-

vestigated in fact c < 0:4).
A powerful mathematical tool (OCGVOF) and some information heretofore poorly understood by

organic crystals growers have been made available for the scientific community to help the investigators to
discern the interrelations among the various parameters under one�s control (that are not independent of

one another) and to elaborate rational guidelines relating to physical factors that can increase the prob-

ability of success in crystallizing protein substances. Further investigation is needed for parametric analyses

of the effects described above.
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